

SSM3K12T

1.6+0.2

1. GATE 2. SOURCE 3. DRAIN

Unit: mm

• Small Package

• Low ON-resistance : $R_{on} = 95 \text{ m}\Omega \text{ (max) (@V_{GS} = 10 V)}$

 $: R_{on} = 145 \text{ m}\Omega \text{ (max) } (@V_{GS} = 4.5 \text{ V})$

• High speed : $t_{on} = 21 \text{ ns}$

 $t_{off} = 16 \text{ ns}$

Absolute Maximum Ratings (Ta = 25°C)

Characteristic		Symbol		Rating	Unit	
Drain-Source voltage		V_{DS}		30	V	
Gate-Source voltage		V _{GSS}		±20	V	
Drain current	DC		ID	3.0	Α	
	Pulse	I _{DP}	I _{DP} (Note 2) 6.0		_ ^	
Drain power dissipation (Ta = 25°C)		P _D (Note 1)		0.7	W	
Diairi power dissipa	dion (1a = 25 C)		t = 10 s	1.25	VV	
Channel temperature		T _{ch}		150	°C	
Storage temperature range		T _{stg}		−55~150	°C	

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the

Weight: 10 mg (typ.)

TSM

reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.

Please design the appropriate reliability upon reviewing the TY Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

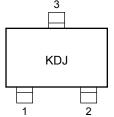
Note 1: Mounted on FR4 board

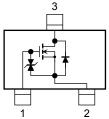
 $(25.4 \text{ mm} \times 25.4 \text{ mm} \times 1.6 \text{ t}, \text{ Cu pad: } 645 \text{ mm}^2)$

Note 2: The pulse width limited by max channel temperature.

Handling Precaution

When handling individual devices (which are not yet mounted on a circuit board), be sure that the environment is protected against electrostatic electricity. Operators should wear anti-static clothing, and containers and other objects that come into direct contact with devices should be made of anti-static materials.

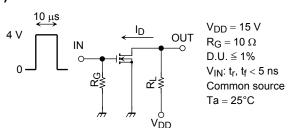

The Channel-to-Ambient thermal resistance R_{th} (ch-a) and the drain power dissipation P_D vary according to the board material, board area, board thickness and pad area, and are also affected by the environment in which the product is used. When using this device, please take heat dissipation fully into account.

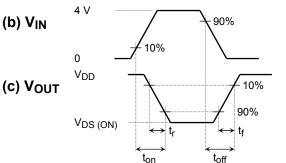


SSM3K12T

Marking

Equivalent Circuit


Electrical Characteristics (Ta = 25°C)


Characteristic		Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage current		I _{GSS}	$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0$	_	_	±1	μΑ
Drain-Source breakdown voltage		V (BR) DSS	$I_D = 1 \text{ mA}, V_{GS} = 0$	30	_	_	V
Drain Cut-off current		I _{DSS}	$V_{DS} = 30 \text{ V}, V_{GS} = 0$	_	_	1	μА
Gate threshold voltage		V _{th}	$V_{DS} = 5 \text{ V}, I_D = 0.1 \text{ mA}$	1.1	_	1.8	V
Forward transfer admittance		Y _{fs}	$V_{DS} = 5 \text{ V}, I_D = 1.5 \text{ A}$ (Note 3)	1.8	3.2	_	S
Drain-Source ON resistance		R _{DS} (ON)	$I_D = 1.5 \text{ A}, V_{GS} = 10 \text{ V}$ (Note 3)	_	78	95	mΩ
			$I_D = 1.5 \text{ A}, V_{GS} = 4.5 \text{ V}$ (Note 3)	_	117	145	
			$I_D = 1.5 \text{ A}, V_{GS} = 4.0 \text{ V}$ (Note 3)	_	135	175	
Total gate charge		Qg	V _{DD} = 24 V, I _D = 3 A, V _{GS} = 4 V	_	2.6	_	nC
Input capacitance		C _{iss}	V _{DS} = 15 V, V _{GS} = 0, f = 1 MHz	_	120	_	pF
Reverse transfer capacitance		C _{rss}	V _{DS} = 15 V, V _{GS} = 0, f = 1 MHz	_	20	_	pF
Output capacitance		Coss	V _{DS} = 15 V, V _{GS} = 0, f = 1 MHz	_	68	_	pF
Switching time	Rise time	t _r		_	13	_	
	Turn-on time	t _{on}	V _{DD} = 15 V, I _D = 1.5 A	_	21	_	
	Fall time	t _f	$V_{GS} = 0~4~V, R_G = 10~\Omega$	_	3.6	_	ns
	Turn-off time	t _{off}		_	16	_	

Note 3: Pulse test

Switching Time Test Circuit

(a) Test circuit

Precaution

 V_{th} can be expressed as voltage between gate and source when low operating current value is I_D = 100 μA for this product. For normal switching operation, V_{GS} (on) requires higher voltage than V_{th} and V_{GS} (off) requires lower voltage than V_{th} .

(relationship can be established as follows: $V_{GS (off)} < V_{th} < V_{GS (on)}$)

Please take this into consideration for using the device.